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Abstract

A new theoretical framework, the EPIC (Executive-Process/Interactive-Control) architecture,
provides the basis for accurate detailed computational models of human multiple-task performance.
Contrary to the traditional response-selection bottleneck hypothesis, EPIC's cognitive processor can
select responses and do other procedural operations simultaneously for multiple concurrent tasks.
Using this capacity together with flexible executive control of peripheral perceptual-motor
components, EPIC computational models account well for various patterns of mean reaction times,
systematic individual differences in multiple-task performance, and influences of special training on
people's task-coordination strategies. These diverse phenomena, and EPIC's success at modeling
them, raise strong doubts about the existence of a pervasive immutable response-selection bottleneck
in the human information-processing system. The present research therefore helps further
characterize the nature of discrete versus continuous information processing.

1. Introduction

Traditionally, it has been hypothesized that a pervasive immutable cognitive response-selection
bottleneck (RSB) exists in the human information-processing system (for comprehensive reviews,
see Meyer & Kieras, 1995; Pashler, 1994). According to the RSB hypothesis, there is a stage of
processing that selects responses to stimuli for various tasks, and that only has enough capacity to

1This report is a preprint of an article to appear in Acta Psychologica. 1t is based on a paper
presented in December, 1994, during the Conference on Discrete versus Continous Processing of
Information, held at the Royal Netherlands Academy of Arts and Sciences, Amsterdam. We
gratefully acknowledge helpful comments, suggestions, and criticisms from Bert Mulder, Andries
Sanders, and our many other colleagues. Portions of the present material have also appeared in
previous technical reports (Kieras & Meyer, 1994; Meyer & Kieras, 1994). Readers are encouraged
to consult them for additional background details. Financial support has been provided by the U.S.
Office of Naval Research through grant N00014-92-J-1173 to the University of Michigan.
Correspondence should be addressed to David E. Meyer, Dept. of Psychology, University of
Michigan, 525 East University, Ann Arbor, M1, 48109-1109, U.S.A., or to David E. Kieras, Dept. of
Electrical Engineering and Computer Science, University of Michigan, 1101 Beal Avenue,

Ann Arbor, MI, 48109-2110, U.S.A.




accommodate one stimulus at a time. Thus, if two tasks (e.g., saying words in response to auditory
tones, and pressing keys in response to visual letters) must be performed simultaneously, then even
when different stimulus and response modalities are involved, the selection of a response for one
task will supposedly have to wait until response selection for the other is completed. Theorists have
typically attributed such delays to permanent "hardware” characteristics of central limited-capacity
decision mechanisms (Craik, 1948; Davis, 1957; De Jong, 1993; McCann & Johnston, 1992;
Pashler, 1984, 1989, 1990, 1993; Pashler & Johnston, 1989: Ruthruff, Miller, & Lachmann, 1995;
Schweickert, Dutta, Sangsup, & Proctor, 1992; Smith, 1967; Van Selst & Jolicoeur, 1993; Vince,

1949; Welford, 1952, 1959, 1967).

Assumning that it is valid, the RSB hypothesis has major implications for conceptualizing
discrete and continuous information processing. These implications concern not only multiple-task
but also single-task performance. Given a pervasive response-selection bottleneck, many individual
tasks could appear to be performed through discrete processing stages that accomplish perceptual
encoding, response selection, and movement production in a strict step-by-step fashion (cf. Luce,
1986; Meyer, Osman, Irwin, & Yantis, 1988; Miller, 1988; Sanders, 1980; Sternberg, 1969;
Townsend & Asby, 1983). For example, suppose a task involves stimuli that have several
orthogonal perceptual dimensions (e.g., shapes and sizes of visual objects). Also, suppose stimulus
values on each perceptual dimension (e.g., round and square for shape; small and large for size) must
be converted to values on other response dimensions (e.g., left and right hands; index and middle
fingers). Then making responses to these stimuli may necessarily entail discrete substages, if there is
a response-selection bottleneck. In particular, the start of selecting a correct response finger on the
basis of an output from a relatively slow perceptual size-identification process might have to wait
until the selection of a correct response hand on the basis of a faster shape-identification process has
been completed (cf. Miller, 1982; Osman, Bashore, Coles, Donchin, & Meyer, 1992). Essentially, a
response-selection bottleneck could limit the extent to which selections of response values along
different dimensions can occur simultaneously.

Analyses of discrete and continuous information processing should therefore take the RSB
hypothesis very seriously. Depending on whether or not there is a pervasive response-selection
bottleneck, more or less constraint would be placed on what mental operations may temporally
overlap each other and exploit their partial outputs. With these stipulations in mind, the remainder
of this article has five parts. First, we survey some attractive features of the traditional RSB
hypothesis. Second, strong arguments are made against taking the validity of this hypothesis for

ranted. Third, an alternative theoretical framework (Kieras & Meyer, 1994; Meyer & Kieras, 1992,
1994, 1995) is described, in which some components of the human information-processing system
have substantially more capacity and flexibility than the RSB hypothesis allows. Fourth, using our
framework, precise computational models are applied to account for results from representative
studies of multiple-task performance. Fifth, we consider what the present theory implies about
future research on discrete versus continuous information processing in a Brave New World without

pervasive immutable response-selection bottlenecks.

2. Attractive Features of The RSB Hypothesis

Several features of the traditional RSB hypothesis have made it especially attractive. Among
them are conceptual simplicity, predictive precision, intuitive appeal, and authoritative endorsement.
Compared to alternatives such as general capacity theory (Moray, 1967; Kahneman, 1973; McLeod,
1978; Gottsdanker, 1980) and multiple-resource theory (Navon & Gopher, 1979; Wickens, 1984),
the RSB hypothesis involves relatively few assumptions and yields more precise quantitative
predictions about certain aspects of multiple-task performance. These assumptions and predictions
are consistent with some expert intuitions about the nature of human attention and the mental
processes that mediate it. As William James (1890, p. 409) rhetorically remarked: "how many ideas
or things ¢an we attend to at once ... the answer is, not easily more than one ... there must be a rapid
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oscillation of the mind from one idea to the next, with no consequent gain of time." When translated
to modern information-processing concepts, James' answer is what might be expected in terms of a
pervasive response-selection bottleneck (Norman, 1969).

2.1 Psychological Refractory-Period Procedure

Moreover, extensive behavioral evidence has been obtained to support the RSB hypothesis. A
major source of this evidence is the psychological refractory-period procedure (Bertelson, 1966;
Kantowitz, 1974; Pashler, 1994; Smith, 1967; Welford, 1967). On each trial of the PRP procedure, a
warning signal is followed by a stimulus for the first of two tasks. In response to it, a subject must
react quickly and accurately. Soon after the Task 1 stimulus, there is a stimulus for the second task.
The time between the two stimuli is the stimulus-onset asynchrony (SOA). In response to the Task 2
stimulus, the subject must again react quickly and accurately. However, instructions for the PRP
procedure typically state that regardless of the SOA, Task 1 should have higher priority than Task 2;
subjects may also be required to make the Task 1 response first (e.g., Pashler, 1984; Pashler &
Johnston, 1989). RTs are then measured to determine how much Task 1 interferes with Task 2.

2.2 Representative PRP Results

Some idealized representative results from the PRP procedure appear in Figure 1. Here mean
RTs for both Tasks 1 and 2 are plotted versus the SOA as a function of Task 2 response-selection
difficulty (easy or hard), which can be varied by manipulating factors like S-R compatibility and S-R
numerosity in Task 2 (Becker, 1976; Hawkins, Rodriguez, & Reicher, 1979; Karlin & Kestenbaum,
1968; McCann & Johnston, 1992). As Figure 1 indicates, such manipulations may produce patterns
of data that are consistent with a response-selection bottleneck.

Constant mean Task 1 RTs. A first salient aspect of Figure 1 is that mean Task 1 RTs are
affected by neither the SOA nor Task 2 difficulty. This conforms nicely to the RSB hypothesis. If
Task 1 stimuli come first at each SOA, then presumably they always enter the response-selection
bottleneck before Task 2 stimuli, and the bottleneck's all-or-none "admissions policy” precludes
Task 2 from competing with Task 1 for the limited processing capacity therein. Satisfying this
implication, many PRP studies have yielded essentially constant mean Task 1 RTs (Davis, 1957;
Hawkins et al., 1979; Karlin & Kestenbaum, 1968; McCann & Johnston, 1992; Pashler, 1990;

Pashier & Johnston, 1989; Welford, 1959).

Elevated Task 2 RTs at short SOAs. Second, the mean Task 2 RTs are higher at short SOAs in
Figure 1. This elevation, called the PRP effect, follows directly from the RSB hypothesis. When the
SOA is short, response selection for Task 2 supposedly waits while the Task 1 stimulus passes
through the bottleneck and is converted to a Task 1 response. As a result, the concomitant extra
delay should raise mean Task 2 RTs above their single-task baseline. Virtually all past studies with
the PRP procedure have yielded such increases (Pashler, 1994).

PRP curves with -1 slopes. In Figure 1, however, mean Task 2 RTs gradually decrease as the
SOA increases, forming so-called PRP curves. Specifically, under the RSB hypothesis, the slopes of
these curves should equal -1 at short SOAs. This is because each increment of the SOA, starting -7
from zero, produces an equal opposite decrement in how long a Task 2 stimulus must wait to enter N
the response-selection bottleneck. Subsequently, once the SOA becomes long enough to yield some [& |}
trials with no delay in Task 2, the PRP curves should become correspondingly shallower, bottoming {1 ?i
out with a slope of zero at very long SOAs. Satisfying these additional expectations, PRP studies 0
have typically manifested curves whose slopes range from -1 to O (e.g., Davis, 1957; Hawkins et al., e
1979: Karlin & Kestenbaum, 1968; McCann & Johnston, 1992; Pashler, 1990; Pashler & Johnston, - L

H
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Figure !. Idealized representative results from the PRP procedure.

Parallel PRP curves. Another quantitative property implied by the RSB hypothesis is that the
SOA and response-selection difficulty for Task 2 should affect mean Task 2 RTs additively. Thus,
as in Figure 1, PRP curves ought to be "parallel” (ie., vertically equidistant) when the difficulty of
Task 2 response selection varies across conditions. This is because regardless of the SOA, each
Task 2 RT depends directly on how long response selection takes for Task 2 after the Task 1
stimulus has passed through the bottleneck (Karlin & Kestenbaum, 1968; Keele, 1973; McCann &
Johnston, 1992; Pashler, 1984; Pashler & Johnston, 1989; Schvaneveldt, 1969). Such additivity and
parallelism have been obtained in several PRP studies, even when Tasks 1 and 2 involve neither the
same stimulus nor response modalities (Becker, 1976; McCann & Johnston, 1992; Pashler, 1984;
Pashler & Johnston, 1989; Ruthruff et al., 1995; Van Selst & J olicouer, 1993). Of course, this would
be expected if between-task interference occurs at a central cognitive level rather than merely at

peripheral perceptual-motor levels.

Other relevant findings. PRP effects are also robust in other respects. Typically, they persist
with extended practice. Even after thousands of practice trials on the PRP procedure, subjects still
produce elevated Task 2 RTs at short SOAs (Gottsdanker & Stelmach, 1971; Karlin & Kestenbaum,
1968). Again, this is expected from the RSB hypothesis, which assumes that the response-selection
bottleneck is an immutable "hardware” component of the human information-processing system.
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3. Arguments Against The RSB Hypothesis

Nevertheless, various arguments can be made against the traditional RSB hypothesis. For
example, its assumptions seem neurophysiologically implausibile. Contrary to them, information
processing in the brain is "massively parallel” and "distributed” throughout components of many
interconnected neural networks (Anderson & Hinton, 1981; Rumelhart & McClelland, 1986). There
are no obvious brain sites that constitute immutable response-selection bottlenecks of the sort to
which PRP effects and other multiple-task performance decrements have been attributed (Allport,
1980, 1987; Neumann, 1987).

A second related concern is that the RSB hypothesis lacks computational flexibility. It provides
little accommodation for executive control processes that allocate available system resources
efficiently and adaptively to different on-going tasks. Task scheduling through an immutable
response-selection bottleneck has been assumed to happen simply on a first-come first-serve basis,
whereby secondary tasks are completely blocked from access to essential resources during extended
periods of time. Any performer who suffers from such rigidity would have great difficulty adapting
successfully to major changes in task priorities and increased or decreased knowledge about
impending environmental stimuli (Allport, 1980, 1987; Neumann, 1987).

Because of its unrealistic limitations, the RSB hypothesis seems inconsistent with results from
many multiple-task situations (Wickens, 1984). An immutable response-selection bottleneck does
not even account fully for data from the PRP procedure. Instead, it has become compellingly evident
that subjects can and do produce patterns of RTs different than those in Figure 1, extending well
beyond the scope of the RSB hypothesis (Meyer & Kieras, 1992, 1994, 1995).

3.1 Divergent PRP Curves

One observed RT pattern for which the RSB hypothesis cannot account very well involves
divergent PRP curves. Such divergence occurs when the difficulty of selecting Task 2 responses
affects mean Task 2 RTs less at short SOAs than at long SOAs, yielding a positive SOA-by-
difficulty interaction. For example, consider the left panel of Figure 2, which shows mean Task 2
RTs (solid curves) from a PRP study by Hawkins et al. (1979), who manipulated response-selection
difficulty by varying the number of S-R pairs in Task 2. Here the Task 2 difficulty effect is only
about 25 msec at the shortest SOA, whereas it is nearly 200 msec at the longest SOA.? Reliable
positive interactions like this have also been reported by several other investigators (e.g., Ivry, Franz,
Kingstone, & Johnston, 1994, 1995; Karlin & Kestenbaum, 1968; Lauber, Schumacher, Glass,
Zurbriggen, Kieras, & Meyer, 1994).

A plausible interpretation of these results is that: (1) at short SOAs, response selection for
Task 2 occurs independently and simultaneously with response selection for Task 1; (2) progress on
Task 2 pauses temporarily before initiation of its response movement, letting Task 1 finish first, as
required by instructions for the PRP procedure; and (3) the slack introduced by this pause aborbs the
effects of response-selection difficulty on Task 2 when the SOA is short. Keele (1973) and others
have discussed how the latter sequence of events could yield the type of positive interaction in
Figure 2 (left panel), whereas temporally separate response-selection stages for Tasks 1 and 2 would
not. Consequently, the absence of strict additivity between the effects of SOA and Task 2 response-
selection difficulty raises compelling doubts about the existence of a pervasive immutable response-
selection bottleneck.

2Mean Task 1 RTs equalled slightly more than 600 ms and were not affected very much by either the
SOA or Task 2 response-selection difficulty (Hawkins et al., 1979).
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Figure 2. Left panel: divergent PRP curves obtained by Hawkins ef al. (1979) with an
auditory-manual Task 1 and visual-manual Task 2. The solid functions represent mean
Task 2 RTs observed when response selection for Task 2 was "easy” (large circles) or "hard”
(large triangles). Each observed mean RT has a standard error of approximately 10 msec.
Dashed functions (small circles and triangles) represent simulated mean Task 2 RTs from the
SRD model to be discussed later (Figure 8). Right panel: convergent PRP curves obtained by
Ivry et al. (1994, 1995, Exp. 2) with a visual-manual Task 1 and visual-manual Task 2.

Mean Task 2 RTs plus-or-minus one standard error (based on the SOA-by-difficulty-by-

subject interaction) are shown.

3.2 Convergent PRP Curves

Another complementary RT pattern for which the RSB hypothesis cannot account very well
involves convergent PRP curves. Such convergence occurs when the difficulty of selecting Task 2
responses affects mean Task 2 RTs more at short SOAs than at long SOAs, yielding a negative
SOA-by-difficulty interaction. Several cases like this have been reported recently (e.g., Ivry et al.,

1994, 1995; Lauber et al., 1994).3 For example, consider the right panel of Figure 2. Here mean
Task 2 RTs are plotted from a PRP study by Ivry et al. (1994, 1995, Exp. 2), who manipulated
response-selection difficulty by varying the spatial S-R compatibility in Task 2. At the shortest
SOA, the difficulty effect on mean Task 2 RT is nearly 300 msec, whereas at the longest SOA, it 18
less than 200 msec, forming a substantial negative SOA-by-difficulty interaction. Given this pattern,
Tvry et al. (1995) attributed their results to "resource sharing strategies.” In contrast, the RSB
hypothesis offers no simple satisfying answers for why, across various experiments, PRP curves
sometimes converge or diverge as a function of SOA and Task 2 response-selection difficulty.

3Converging PRP curves may occur even when there are very little effects of SOA and/or Task 2
response-selection difficulty on mean Task 1 RTs (Lauber et al., 1994).




3.3 Slopes Steeper Than -1

The plausibility of a pervasive immutable response-selection bottleneck is likewise reduced by
carefully examining the slopes that PRP curves sometimes have. For example, consider the left
panel of Figure 3, which shows mean Task 2 RTs from a study by Lauber et al. (1994, Exp. 2).
These data were obtained under conditions similar to those of Hawkins et al. ( 1979), except that the
present Task 1 had more S-R pairs (viz., four instead of two). This change yielded "parallel” (ie.,
vertically equidistant) average PRP curves with approximately additive effects of SOA and Task 2
difficulty, as the RSB hypothesis predicts. However, over their two shortest SOAs, Lauber et al.
(1994, Exp. 2) found that the PRP curves in Figure 3 had extremely negative slopes (almost -1.4 on
average) that were reliably steeper than -1. Such extreme steepness was also found by Hawkins
et al. (1979) in some of their conditions. Why and how might this happen? In reply, the RSB
hypothesis again has no ready answer. As mentioned before, it implies that the slopes of PRP curves
should be -1 or shallower (cf. Figure 1).
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Figure 3. Left panel: "parallel” (i.e., vertically equidistant) average PRP curves obtained by
Lauber et al. (1994, Exp. 2) with an auditory-manual Task 1 and visual-manual Task 2.
Mean Task 2 RTs plus-or-minus one standard error (based on the SOA-by-difficulty-by-
subject interaction) are shown. Right panel: observed and predicted interactions between
effects of SOA and response-selection difficulty on mean Task 2 RTs for eight subjects
whose average PRP curves appear in the left panel. Nearly all of the dark vertical bars
(observed interactions) are more extreme (RMS error = 29 ms; p < .05) than the light vertical

bars (predicted interactions), which come from the RSB hypothesis.

3.4 Systematic Individual Differences

Other implications of the RSB hypothesis may be refuted by comparing PRP curves from
different subjects. If everyone has an immutable response-selection bottleneck, then each subject in
an experiment should produce the same qualitative pattern of mean Task 2 RTs. Nevertheless,
occasional checks for such homogeneity have instead revealed striking systematic individual
differencés (e.g., Ivry et al., 1994, 1995; Lauber et al., 1994).
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For example, consider the right panel of Figure 3. Here we have plotted observed interactions
between the effects of SOA and response-selection difficulty on mean Task 2 RTs for eight subjects
who contributed to the average PRP curves of Figure 3's left panel. Across the horizontal axis of
Figure 3's right panel, these subjects are ordered according to the magnitudes and signs of their
SOA-by-difficulty interactions. On the vertical axis, a zero interaction indicates that a subject
produced equal Task 2 difficulty effects at the shortest and longest SOAs, consistent with "parallel”
PRP curves. A positive interaction indicates that the subject's PRP curves diverged as the SOA
increased, and a negative interaction indicates that they converged. The dark vertical bars show how
positive or negative each subject's interaction was. Three subjects had marked negative interactions
(dark vertical bars extending downward) and convergent PRP curves. One subject had a near-zero
interaction and virtually "parallel” PRP curves. Four other subjects had various degrees of positive
interaction (dark vertical bars extending upward) and divergent PRP curves.

In contrast, the light vertical bars of Figure 3 (right panel) represent what the RSB hypothesis
predicts for a sample of eight such subjects. These predictions were obtained by assuming that each
subject belongs to a homogeneous population whose members all have theoretically additive effects
of SOA and Task 2 response-selection difficulty. With this assumption, we estimated the
distribution from which the subjects' observed interactions should come, given how much between-
trial variance there was in each subject's data. Thus, if every subject had a response-selection
bottleneck, then the light bars ought to match the dark bars closely. However, this expected
equivalence did not occur. A large majority (i.e., 7/8) of the dark vertical bars in Figure 3 (right
panel) are longer than the light bars paired with them, revealing interactions consistently more
extreme than the RSB hypothesis predicts. Our results instead suggest that there are two (or more)
distinct subgroups of subjects, including some who produce significantly convergent PRP curves and
others who produce significantly divergent PRP curves. Examples of two such cases (viz. Subjects 1
and 8) appear in Figure 4. These individual differences reinforce two conclusions: people do not
have immutable response-selection bottlenecks; other mechanisms -- whose parameters depend on
personal predilections -- are the source of observed PRP effects.

10007 Subject 1 —O— Easy Task 2 100017 Subject 8 —@— Easy Task 2
—2— Hard Task 2 —=&— Hard Task 2
900 900
> 8001 o 8007
E E
g 7007 2 7001
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Figure 4. Results from two different subjects, one with convergent PRP curves (left panel)
and another with divergent PRP curves (right panel), who contributed to Figure 3.




3.5 Effecis of Special Training

Finally, consistent with the preceding conclusions, some studies have revealed that subjects'
PRP curves can be modified through special types of training (e.g., Koch, 1993, 1994; Lauber et al.,
1994; Sanders, 1964). Such results affirm that whatever the source of the PRP effect, it is certainly
not "immutable.” For example, during another study by Lauber et al. (1994, Exp. 3), additional
subjects were tested under the same PRP procedure that yielded the data in Figures 3 and 4.
However, they received special preliminary training before the PRP procedure began. This training,
which followed Gopher's (1993) suggestions about how to optimize multiple-task performance,
required concurrent auditory-manual and visual-manual tasks to be performed as quickly as possible
with equally high priority and relaxed constraints on the order of the tasks' stimuli and responses. As
a result, subjects were strongly encouraged to overlap their response-selection processes for the two
tasks. After this training finished, subjects then entered the standard PRP procedure.

Figure 5 (left panel) shows average Task 2 PRP curves that Lauber et al. (1994, Exp. 3) thereby
obtained. Unlike before (cf. Figure 3, left panel), these new curves diverge substantially. At the
shortest SOA, Task 2 response-selection difficulty has little effect on mean Task 2 RTs, whereas at
the longest SOA, there is still a substantial difficulty effect. Furthermore, during the PRP procedure,
all of the subjects who received special training produced some positive interaction between the
effects of SOA and Task 2 difficulty (Figure 5, right panel). This latter outcome, combined with
other prior ones (Figures 2 through 4), seems rather problematic for the RSB hypothesis.
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400

SOA-by-Difficuity interaction (ms)

300

0 200 400 600 800 1000
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Figure 5. Left panel: divergent average PRP curves obtained by Lauber et al. (1994, Exp. 3)
after subjects received special preliminary training that encouraged concurrent response-
selection for an auditory-manual Task 1 and visual-manual Task 2. Mean Task 2 RTs plus-
or-minus one standard error (based on the SOA-by-difficulty-by-subject interaction) are
shown. Right panel: observed and predicted positive interactions (RMS error = 17 ms)
between effects of SOA and response-selection difficulty on mean Task 2 RTs for eight
subjects who contributed to the average PRP curves in the left panel. The predicted
interactions (light vertical bars) assume that these subjects belong to a single homogeneous
population whose members produce different amounts of observed positive interaction (dark
vertical bars) only because of inherent between-trial variability in their RTs.
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4. A New Theoretical Framework

If a pervasive immutable response-selection bottleneck does not mediate the PRP effect, then
what is the effect's true source? As hinted already, an answer may be found in the instructions for
the standard PRP procedure (Meyer & Kieras, 1992, 1994, 1995; Koch, 1993, 1994). They typically
request that Task 1 receive absolute priority. For example, in Pashler and Johnston's (1989) study,
subjects were told that they "should respond as rapidly as possible to the first stimulus,” and "the
experimenter emphasized the importance of making the first response as promptly as possible.”
Similarly, in a study by Pashler (1984, Exp. 1, p. 365), subjects were instructed that "the first
stimulus must be responded to before the second.” Because of such constraints, people may
postpone completing Task 2 at short SOAs even though they have the potential capacity to perform
concurrent tasks with no between-task interference. To satisfy the PRP procedure's instructions,
perhaps optional temporary bottlenecks are programmed at one or more Stages of processing for
Task 2, deferring Task 2 responses until Task 1 has finished. If so, then the magnitudes of PRP
effects and the forms of PRP curves may be under strategic control, and this could account for many
of the phenomena (e.g., Figures 2 through 5) that scem antithetical to the traditional RSB hypothesis.
Given these possibilities, we have therefore begun to develop a new theoretical framework for
describing and predicting human multiple-task performance through detailed executive
computational models (Kieras & Meyer, 1994; Meyer & Kieras, 1992, 1994, 1995).

4.1 Basic Assumptions

The first basic assumption of our framework is that in some respects, people have substantial
cognitive capacity for performing multiple concurrent tasks. More precisely, we assume that various
task procedures can be executed simultaneously with distinct sets of production rules (cf. Anderson,
1976, 1983; Newell, 1973a). For example, while driving a car, a person may alsobe able to talkon a
cellular telephone because the production rules used respectively for driving and conversing are
distinct and applied in parallel. According to the present framework, there is no immutable decision
or response-selection bottleneck for executing task procedures at a central cognitive level.

Instead, we attribute decrements in multiple-task performance to other sources such as limited
peripheral sensory and motor mechanisms, which cause "structural interference” (cf. Kahneman,
1973). For example, while making phone calls in a car, most drivers cannot keep their eyes
simultaneously on the phone dial and the road, nor can they keep both hands on the steering wheel
and hold the telephone. Perhaps it is these sensory-motor constraints -- not limited cognitive
capacity — that restrict people's ability to drive safely and make phone calls at the same time.

We also assume that conflicts caused by sensory-motor constraints can be alleviated by properly
scheduling the tasks at hand. In particular, concurrent tasks may be scheduled by efficient flexible
executive processes that help people obey instructions about relative task priorities. For example,
when a driver sees a highway exit, his or her executive processes may end a phone call so that both
hands can be put on the steering wheel to take the exit safely.

Of course, not all of our assumptions are entirely new. Some theorists have already begun to
describe the functions of executive control in human multiple-task performance (Baddeley, 1986;
Duncan, 1986; Logan, 1985; McLeod, 1977; Neisser, 1967; Newell, 1973b; Norman & Shallice,
1986; Shallice, 1972). By characterizing the nature of executive processes more precisely, and by
implementing them in the framework of a detailed system architecture, we take further steps toward
a comprehensive theory that supplants the traditional RSB hypothesis.
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4.2 The EPIC Architecture

To embody our basic assumptions, we have developed the EPIC (Executive-Process/Interactive-
Control) architecture, which is intended to have many of the same basic properties as the human
information-processing system (Kieras & Meyer, 1994; Meyer & Kieras, 1992, 1994, 1995). EPIC
may be viewed as a conceptual neighbor of other previously proposed architectures such as the
Model Human Processor (Card, Moran, & Newell, 1983), ACT* (Anderson, 1983), and SOAR
(Laird, Newell, & Rosenbloom, 1987). Figure 6 shows EPIC's major components. Among them are
specific modules devoted to perceptual, cognitive, and motor processing. The perceptual processors
include ones for vision, audition, and touch. The motor processors include ones for manual,
articulatory, and ocular action. Each module has software routines, written in the LISP
programming language, that send and receive symbolic information to and from other parts of the
overall system. Inputs to EPIC's perceptual processors come from simulated sensors (eyes, ears,
etc.) that monitor external display devices (CRT screen, headphones, etc.) in a virtual task
environment (e.g., the PRP procedure); outputs by EPIC's motor processors go to simulated effectors
(hands, mouth, etc.) that operate the environment's external recording devices (keyboard, joystick,
voice key, etc.). Constructing models based on EPIC involves programming its cognitive processor
to interact with the task environment through the architecture’s perceptual and motor processors.
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Figure 5. A schematic diagram of the EPIC (Executive-Process/Interactive-Control)
architecture and the virtual task environment with which its components interact during
computational simulations of human multiple-task performance.
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The following subsections describe the components of the EPIC architecture in more detail.
Readers who are already familiar with them from previous reports (Kieras & Meyer, 1994; Meyer &
Kieras, 1994) may skip ahead to Secrion 4.3.

Perceptual processors. During task performance, EPIC's perceptual processors detect and
identify stimuli (printed alphanumeric characters, geometric objects, auditory tones, speech, etc.) that
occur in the virtual task environment, depositing their symbolic representations in working memory.
Consistent with previous empirical research (e.g., Pashler, 1989), each perceptual processor is
assumed to operate asynchronously, in parallel with other components of the architecture. The times
taken for stimulus detection and identification are task-dependent parameters, whose values we

estimate from current data or past literature.

Cognitive processor. EPIC's cognitive processor has no immutable decision or response-
selection bottleneck per se. Instead, it relies on three major subcomponents that enable a high degree
of parallel processing. These subcomponents include an on-line declarative working memory,
production memory, and production-rule interpreter that together implement sets of instructions
whereby individual tasks are coordinated and performed simultaneously.

Working memory is assumed to contain various types of information, including (1) symbolic
identities of external stimuli sent through EPIC's perceptual processors; (2) symbolic identities of
selected responses waiting for transmission to EPIC's motor processors; (3) task goals; (4) sequential
control flags; and (5) symbolic notes about the status of other system components (e.g., current
motor-processor states). With this information, which evolves systematically over time,
performance of each task may proceed efficiently from start to finish.

According to our assumptions, skilled performance is achieved by applying rules stored in
EPIC's production memory. These rules, like those postulated by some other theorists (e.g.,
Anderson, 1976, 1983; Newell, 1973a), have the form "1F x THEN v", where "x" refers to the
current contents of working memory, and "v" refers to actions that the cognitive processor executes.
For example, during a primary auditory-manual choice-reaction task, the following rule might be
used to instruct EPIC's manual motor processor that it should prepare and produce a keypress by the
left index finger in response to an 800 Hz tone:

IF
({GOAL DO TASK 1)
(STEP DO CHECK FOR TONE 800)
(AUDITORY TONE 800 ON)
(STRATEGY TASK 1 RESPONSE MOVEMENT IS IMMEDIATE))

THEN
( (SEND-TO-MOTOR (MANUAL PRESS LEFT INDEX))

(ADD (TASK 1 RESPONSE UNDERWAY) )
(ADD (STEP WAIT FOR TASK 1 RESPONSE COMPLETION))

(DEL (STEP DO CHECK FOR TONE 800))
(DEL (AUDITORY TONE 800 ON))).

The actions of this rule, which not only instructs the manual motor processor but also adds and
deletes specified symbolic items in working memory, would be executed whenever working memory
contains all of the items in the rule's conditions. For each task that a person has learned to perform
skillfully, there would be a set of such rules stored in EPIC's production memory. Also,
complementing these task-rule sets, production memory is assumed to contain sets of executive-
process rules that manage the contents of working memory, and that coordinate performance

depending on task instructions and perceptual-motor constraints.
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Task and executive rules in EPIC's production memory are tested and applied by the production-
rule interpreter of EPIC's cognitive processor, using the Parsimonious Production System (PPS;
Covrigaru & Kieras, 1987). Under PPS, the interpreter operates through a series of processing

cycles, whose durations are assumed to have a mean length of 50 msec.* At the start of each cycle,
the interpreter tests the conditions of all rules in production memory, determining which ones match
the current contents of working memory. At the end of each cycle, for every rule whose conditions
are completely matched by the current contents of working memory, all of the rule's actions are
executed by the cognitive processor.

We assume that there is no limit on how many production rules can have their conditions tested
and actions executed during any particular processing cycle. Also, the cycle durations do not depend
on the number of rules involved. It is in this respect that EPIC's cognitive processor has no
bottleneck per se. Through appropriate sets of task rules, the cognitive processor may
simultaneously select responses and do other operations for multiple concurrent tasks, without
between-task interference at this "central” level. Our computational models of multiple-task
performance avoid conflicts among the actions of task rules at peripheral perceptual and motor levels
by including executive-process rules that help coordinate and schedule tasks harmoniously.

Motor processors. Upon receiving instructions from the cognitive processor, EPIC's motor
processors convert symbolic identities of selected responses to specific features that desired overt
movements should have. For example, a manual movement might have features that specify the
style, hand, and finger (e.g., PRESS, LEFT, INDEX) tobe used. We assume that the features for a
response movement are prepared serially, with each feature adding a mean increment of 50 msec to
the total movement-production time (cf. Rosenbaum, 1980). Under certain conditions, some features
for anticipated response movements may be prepared in advance, if their identities are partially
known beforehand. After all of the features for a response movement have been prepared, it is
produced overtly through a final initiation step that likewise adds a mean increment of 50 msec.
Because the motor preparation and initiation of overt movements are architecturally separate from
the prior selection of symbolic response identities, EPIC enables precise control over the flow of
information through its components. While response selection may occur simultaneously for
multiple concurrent tasks, the production of distinct movements may be temporally staggered,
depending on prevalent task instructions and available resources at the motor level.

As indicated already (Figure 6), EPIC includes distinct motor processors for manual, vocal, and
ocular action. Each of these motor processors is assumed to operate in parallel with the others. We
also assume, however, that each motor processor only has the capacity to prepare and initiate one
response movement at a time. Thus, at the motor level, there are explicit peripheral bottlenecks in
EPIC (cf. Ivry et al., 1994, 1995; Keele, 1973).

An especially relevant instance of this concerns manual movements. Based on results reported
previously about manual movement production (e.g., McLeod, 1977), EPIC has only one motor
processor devoted to preparing and initiating movements by the two (i.., right and left) hands.
Thus, for multiple manual tasks, substantial between-task interference is possible at the peripheral
motor level. Such interference must be avoided through judicious executive control.

4During actual runs, the cognitive processor's cycle durations are sampled from a distribution whose
standard deviation is typically 10 ms (i.e., 20% of the 50 ms mean), introducing realistic stochastic
variation into simulated RT data (Kieras & Meyer, 1994; Meyer & Kieras, 1992, 1994, 1995).
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4.3 Adaptive Executive-Control Models

Within the framework of the EPIC architecture, we have formulated a class of adaptive
executive-control (AEC) models to characterize performance in the PRP procedure. Our AEC
models incorporate executive processes that flexibly control the extent to which progress on a
secondary task overlaps with a primary task. Figure 7 illustrates how this control is achieved.
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Figure 7. Component processes for the class of adaptive executive-control (AEC) models
whereby the tasks of the PRP procedure may be flexibly coordinated.

14




According to this view, performance of each task goes through several steps, including stimulus
identification, response selection, and movement production, consistent with discrete stage models
(Sternberg, 1969; Sanders, 1980). Furthermore, there is assumed to be an executive process that
coordinates Tasks 1 and 2. Its supervisory functions include (1) enabling the primary and secondary
tasks to proceed at the start of each trial; (2) specifying a Task 2 lockout point; (3) specifying a
Task 1 unlocking event; (4) waiting for the Task 1 unlocking event to occur; and (5) unlocking
Task 2 processes so that they may be completed.

Task 2 lockout points. By definition, the Task 2 lockout point is a point during the course of
Task 2 such that when it has been reached, further processing for Task 2 stops until Task 1 enters a
"done" state. There are at least three potential alternative Task 2 lockout points (Figure 7, right-side
ovals), which are located respectively before the start of stimulus identification, response selection,
and movement production for Task 2. Depending on whether the executive process specifies a pre-
movement, pre-selection, or pre-identification lockout point, progress on Task 2 would overlap more
or less with Task 1. '

Task I unlocking events. The extent of such ovelap is also influenced by the specification of a
Task 1 unlocking event. By definition, this is an event during the course of Task 1 such that when it
occurs, Task 1 is deemed to be "done,” and the executive process permits processing for Task 2 to
continue beyond the Task 2 lockout point. There are several potential alternative Task 1 unlocking
events (Figure 7, left-side ovals); Task 1 may be deemed "done” immediately after either its
stimulus-identification, response-selection, or movement-production stage finishes. Again,
depending on whether the executive process specifies a post-identification, post-selection, or post-
movement unlocking event, progress on Task 2 would overlap more or less with Task 1.

Executive production rules. At the start of each trial, our AEC models’ executive process
specifies a particular Task 2 lockout point and Task 1 unlocking event by putting their designations
in working memory. For example, the following executive production rule enables a post-response-
selection lockout point for Task 2 and a post-movement-initiation unlocking event for Task 1

IF
( {GOAL DO PRP PROCEDURE)
(STRATEGY AUDITORY-MANUAL TASK 1)
(STRATEGY VISUAL-MANUAL TASK 2)
(VISUAL FIXATION POINT DETECTED)
(NOT (TRIAL UNDERWAY)))
THEN
{ (SEND-TO-MOTOR MANUAL RESET)
(DEL (VISUAL FIXATION POINT DETECTED))
(ADD (TRIAL UNDERWAY))
(ADD (GOAL DO TASK 1))
(ADD (GOAL DO TASK 2))
(ADD (STRATEGY TASK 2 RESPONSE MOVEMENT IS DEFERRED))
(ADD (STRATEGY UNLOCK ON MOTOR-SIGNAL MANUAL STARTED LEFT))
(ADD (STEP WAIT FOR TASK 1 DONE)})).

Subsequently, when EPIC's manual motor processor informs the cognitive processor that the Task 1
response movement (a left-hand key press) has been initiated, the following executive production
rule unlocks Task 2 and lets it finish:
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IF
( (GOAL DO PRP PROCEDURE)
(STRATEGY AUDITORY-MANUAL TASK 1)
(STRATEGY VISUAL-MANUAL TASK 2)
{STEP WAIT-FOR TASK 1 DONE)
(TASK 1 DONE)

THEN
((DEL (STEP WAIT-FOR TASK 1 DOXNE))

(DEL, (TASK 1 DONE))

(DEL (STRATEGY TASK 2 RESPONSE MOVEMENT IS DEFERRED) )
(ADD (STRATEGY TASK 2 RESPONSE MOVEMENT IS IMMEDIATE))
(ADD (STEP WAIT-FOR TASK 2 DONE))))

As a result, response-selection but not movement-production stages for the two tasks could overlap.
Other executive production rules may enable different lockout points and unlocking events instead of
those just illustrated, regulating the amount of overlap that actually occurs.

Particular AEC models. Overall, the class of AEC models includes many particular cases. For
each possible combination of Task 2 lockout point and Task 1 unlocking event, there is a different
set of executive production rules that can implement this combination, achieving a certain
discretionary amount of temporal overlap between the two tasks. Which executive process is used
under what circumstances may vary with task instructions, strategic goals, perceptual-motor
requirements, and past experience.

In particular, one of our AEC models can mimic a response-selection bottleneck. Its executive
process does this by specifying a pre-selection lockout point for Task 2 and a post-selection
unlocking event for Task 1, thereby precluding response selection during Task 2 until Task 1
response selection has finished. Within EPIC's framework, however, such specifications are neither
obligatory nor immutable, contrary to the traditional RSB hypothesis. An optional response-
selection bottleneck may, but need not, be imposed when the situation encourages making extremely

sure that Task 2 responses never precede Task 1 responses.

Other particular AEC models can mimic additional types of bottleneck. For example, Keele
(1973) has hypothesized that a movement-initiation bottleneck rather than a response-selection
bottleneck exists in the human information-processing system. Consistent with this hypothesis, an
executive process may defer Task 2 movement initiation by specifying a post-selection/pre-
movement lockout point for Task 2 and a post motor-initiation unlocking event for Task 1. Again,
however, such specifications are neither obligatory nor immutable in EPIC. An optional movement-
initiation bottleneck may, but need not, be imposed when the situation encourages producing Task 2
responses as quickly as possible after Task 1 finishes.

4.4 Qualitative Accounts of PRP Phenomena

Unified qualitative accounts for a variety of PRP phenomena, including many beyond the scope
of the traditional RSB hypothesis, are provided by the EPIC architecture and its AEC models.

PRP effect. In terms of our theoretical framework, elevated Task 2 RTs at short SOAs result
mainly from having to satisfy task instructions for the PRP procedure. Due to these instructions,
Task 2 cannot proceed freely from start to finish along with Task 1, because doing so might yield
premature Task 2 responses when Task 1 is relatively hard and the SOA is short. Thus, executive
processes for the PRP procedure must, out of strategic necessity, specify some intermediate
unlocking event and lockout point for Tasks 1 and 2 respectively, delaying overt Task 2 responses
enough that they never precede Task 1 responses. Recently, Koch (1993, 1994) has offered an
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independent account of the PRP effect that is similar to ours, thereby reinforcing some of the present
article's main premises.

Diverse forms of PRP curves. Given the adjustability of their lockout points and unlocking
events, our AEC models likewise imply that PRP curves may have diverse forms. If the executive
process adopts a pre-selection lockout point for Task 2, then it can yield "parallel” (i.e., vertically
equidistant) PRP curves of mean Task 2 RTs as in Figure 1. This would seem especially plausible
when Task 1 is relatively difficult and has a high probability of finishing after Task 2 at short SOAs
unless the executive process strongly intervenes. In contrast, if Task 1 is relatively easy and
encourages a more ambitious strategy that needs to guard less against premature Task 2 responses,
then the executive process may adopt a post-selection lockout point for Task 2, thereby producing
(liigvgergent PRP curves like those in the left panels of Figures 2 and 5 (Meyer & Kieras, 1992, 1994,

5).

Convergent PRP curves (e.g., Figure 2, right panel) are also accommodated naturally by our
AEC models (Meyer & Kieras, 1995). Suppose that at the start of each trial, the unlocking event and
lockout point specified for Tasks 1 and 2, respectively, depend on the anticipated difficulty of
response selection in Task 2. Also, suppose that the specified Task 2 lockout point is a relatively
earlier one when Task 2 will be difficult than when it will be easy, whereas the Task 1 unlocking
event is a relatively later one. Then less overlap may occur between Tasks 1 and 2 at short SOAs in
the difficult Task 2 condition than in the easy Task 2 condition, causing the difficult Task 2 to
manifest a larger PRP effect than does the easy Task 2. Combined with the main effect of Task 2
difficulty at long SOAs, this difference between PRP effects in the easy and difficult Task 2
conditions would yield a pair of converging PRP curves. A possible rationale for such difficulty-
dependent task scheduling is that, although not necessary under EPIC, it may seem to help preclude
a difficult Task 2 from interfering more with Task 1 than does an easy Task 2.

Slopes steeper than -1. Similarly, our AEC models account for PRP curves whose slopes are
steeper than -1. Suppose that at the start of each trial, the executive process specifies an initial
cautious unlocking event and lockout point for Tasks 1 and 2, respectively. Also, suppose that after
the Task 1 stimulus has arrived, no Task 2 stimulus is detected during a subsequent period of time
(i.e., the SOA is somewhat greater than zero). Then the executive process may modify the Task 2
lockout point and/or Task 1 unlocking event by updating their designations in working memory,
because Task 1 now has a better chance of finishing first without much further delay in Task 2.
Specifically, the executive process could make the modified Task 2 lockout point be later and/or
Task 1 unlocking event be earlier than they were before, using what we call progressive unlocking
(Meyer & Kieras, 1995). With progressive unlocking, mean Task 2 RTs at intermediate SOAs
would be less than when the lockout point and unlocking event are static throughout each trial. The
extra RT reduction, combined with the usual RT decrement caused by increasing the SOA, therefore
yields PRP curves whose slopes are steeper than -1, as in Figure 3 (left panel). Indeed, such extreme
steepness may be a hallmark of sophisticated executive processes that are sensitive to rapidly
evolving contingencies in multiple-task performance.

Individual differences. Of course, if people have such executive control, then individual
differences might occur in their patterns of PRP curves. Depending on personal factors, different
subjects may be inclined to adopt different Task 2 lockout points and Task 1 unlocking events. If so,
then this would yield mixtures of diverging, parallel, and converging PRP curves, as some
investigators have reported (e.g., Ivry et al., 1994, 1995; Lauber et al., 1994). Furthermore, the
curves produced by any particular individual might change from one set of conditions to another,
depending on how each condition meshes with the subject's predilections.
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Training effects. Yet despite these individual differences, our AEC models also imply that
executive processes can be shaped and homogenized through proper experience. If Task 2 lockout
points and Task 1 unlocking events are adjustable, then certain types of training should induce more
overlap between primary and secondary tasks. For example, subjects might come to adopt more
optimal executive processes when responses must be produced rapidly in an unconstrained rather
than constrained order (Koch, 1993, 1994; Lauber et al., 1994; cf. Pashler, 1990). Consequently,
upon later transfer to the standard PRP procedure, PRP curves may embody a pattern that is similar
across subjects and indicative of concurrent response selection (e.g., Figure 5). Moreover, if there
are no constraints on the order in which subjects must make their responses, then the PRP effect may
virtually disappear (Koch, 1993, 1994), consistent with EPIC's capacity to select and execute
multiple responses simultaneously.

5, Computational Simulations of Quantitative PRP Data

Additional justification of present claims is provided by computational simulations that account
quantitatively for data from the PRP procedure (Meyer & Kieras, 1992, 1994, 1995). Our
simulations to date are based on one instructive member of the AEC class. We call it the strategic

response-deferment (SRD) model.

5.1 Strategic Response-Deferment Model

Figure 8 shows the SRD model's executive process, which starts each trial of the PRP procedure
by putting Tasks 1 and 2 in "immediate” and"deferred” mode, respectively. While Task 2 1s in
deferred mode, the identities of Task 2 responses may be selected and sent to working memory, but
Task 2 response movements are not produced by EPIC's motor processors. This constraint is
imposed by assigning a post-selection/pre-motor lockout point to Task 2. Putting Task 1 in
immediate mode lets its responses be selected and sent directly to their motor processor. When the
Task 1 unlocking event occurs (e.g., the Task 1 response movement is initiated), the executive
process temporarily suspends Task 2 (i.e., withdraws "GOAL DO TASK 2" from working memory)
and shifts it to immediate mode, after which Task 2 is resumed again (i.€., "GOAL DO TASK 2" 18
reinserted in working memory). Following this transition, previously selected Task 2 responses are
sent directly from working memory to their motor processor. If response selection has not yet
finished for Task 2 before it enters the immediate mode, then Task 2 production rules may both
select and send Task 2 responses to their motor processor. Because response selection for Task 2 1S
suspended briefly during the transition from deferred to immediate mode, the SRD model has a
flexible combination of temporary "soft" movement-initiation and response-selection bottlenecks (cf.

De Jong, 1993; Kantowitz, 1974; Keele, 1973).

5Unlike the movement-initiation bottleneck hypothesis of Keele (1973) and the multiple-bottleneck
hypothesis of De Jong (1993), however, the SRD model assumes that these bottlenecks are optional
- not immutable - ones programmed by the executive process to efficiently satisfy instructions of

the PRP procedure.
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5.2 Simulations with The SRD Model

With the SRD model, we have successfully simulated quantitative data from many
representative PRP studies (e.g., Hawkins et al., 1979; Karlin & Kestenbaum, 1968; McCann &
Johnston, 1992; Pashler, 1990), confirming the utility of the EPIC architecture and the validity of our
present theoretical claims (Meyer & Kieras, 1992, 1994, 1995).

PRP study by Hawkins et al. (1979). One PRP study that has provided us with extensive
relevant data is by Hawkins et al. (1979). In part of this study, subjects performed an auditory-vocal
Task 1 (saying words in response to two alternative tones) and an easy or hard visual-manual Task 2
(pressing keys in response to either two or eight alternative printed digits). A comparison between
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Hawkins et al.'s empirical mean RTs from these conditions and simulated mean RTs from the SRD
model appears in Figure 9 (left panel, solid vs. dashed curves).
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Figure 9. Left panel: goodness-of-fit between simulated mean RTs (small symbols on
dashed curves) from the SRD model and empirical mean RTs (large symbols on solid curves)
from Hawkins et al.'s (1979) PRP study with an auditory-vocal Task 1 and visual-manual
Task 2. Filled circles and triangles represent Task 2 RTs when response-selection was
respectively easy or hard; unfilled circles and triangles represent corresponding Task 1 RTs.
Right panel: goodness-of-fit between simulated mean RTs from the SRD model and
empirical mean RTs from McCann and Johnston's (1992, Exp. 2) PRP study.

As this graph indicates, the SRD model accounts well (R? = .99) for the positive interaction that
Hawkins et al. (1979) found between SOA and response-selection difficulty in Task 2, which yielded
divergent PRP curves. This follows because the model's executive process lets response selection
proceed simultaneously for Tasks 1 and 2 at short SOAs, so the difficulty effect on Task 2 is
absorbed by waiting for the Task 1 unlocking event. With optional progressive unlocking (Meyer &
Kieras, 1995), the executive process accurately reproduces a slope significantly steeper than -1,
which occurred in the PRP curve at short SOAs when Task 2 was relatively easy (Figure 9, left
panel). Our simulations of other data from Hawkins et al.’s (1979) study also produced good fits

(e.g., see Figure 2, left panel, solid vs. dashed curves).®

PRP study by McCann and Johnston (1979). In addition, the SRD model accounts well for
data from studies that have yielded "parallel” (i.e., vertically equidistant) rather than divergent PRP
curves. For example, consider the right panel of Figure 9, which shows some of McCann and
Johnston's (1992, Exp. 2) data. Here the effects of SOA and response-selection difficulty on
empirical mean Task 2 RTs (solid curves) are additive. Similarly, simulated mean Task 2 RTs

(dashed curves) produced by the SRD model manifest such additivity (R? = .99).

6 Across these different conditions, the number of variable parameter values used by the SRD model
was markedly less than the number of reliable one-degree-of-freedom contrasts between mean RTs

in Hawkins et al.'s data (Meyer & Kieras, 1995).
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The latter pattern can be understood more fully in terms of how McCann and Johnston's (1992,
Exp. 2) subjects were tested. During the PRP procedure, they performed an auditory-vocal Task 1
(saying words in response to tones) together with an easy or hard visual-manual Task 2 (pressing
keys in response to horizontal arrows or printed letters). On each trial, a relatively small Task 2
stimulus was displayed several degrees to the right or left of a central visual fixation point. Subjects
could not predict beforehand exactly where the Task 2 stimulus would be located. Following the
SOA, eye movements presumably had to be made for stimulus identification in Task 2. This
requirement - which is mimicked by the SRD model -- probably created a temporary peripheral
perceptual bottleneck that precluded Task 2 response selection from overlapping with response
selection for Task 1. Because Task 1 was relatively easy, subjects may have already finished it and
entered the unlocking phase of the SRD model (Figure 8) by when the Task 2 stimulus identity
became available for response selection (Meyer & Kieras, 1994, 1995).

More generally, this interpretation raises an important meta-theoretical point. Results (e.g.,
"parallel” PRP curves) that are superficially consistent with the traditional RSB hypothesis may
actually have much subtler sources. Thus, future interpretation of data from the standard PRP
procedure and other multiple-task paradigms should take such subtleties more fully into account.

6. Conclusion

In conclusion, our discourse on the RSB hypothesis, PRP procedure, EPIC architecture, and
AEC/SRD models has potentially significant implications for characterizing discrete versus
continuous human information processing. If the present theoretical claims are valid, then people's
performance may entail a variety of concurrent discrete perceptual-motor and cognitive processes
that provide symbolic partial outputs to each other. We therefore concur with at least some of the
assumptions made by Miller's (1982, 1988) asynchronous discrete-coding model, under which
stimulus identification and response selection overlap temporally, producing quantized intermediate
outputs about relevant stimulus and response features, respectively. Furthermore, it now appears that
when two or more tasks do not logically conflict, sets of production rules for them may be used
simultaneously as if procedural cognitive processes have multiple channels rather than a single-
channel response-selection bottleneck.

Another lesson from our research is that even in very elementary situations, sophisticated
executive processes play a crucial role. For any task, there are many alternative paths from stimulus
input to response output in the human information-processing system. The path that is actually
taken, and the extent to which processing may seem "discrete” or "continuous," can depend on
control strategies that subjects adopt. Future research on discrete versus continuous processing
should take these strategies more fully into account. This may be facilitated by formulating a
comprehensive system architecture and detailed computational models. An important role of such
models will be to help specify how working memory is judiciously used so that procedural cognitive
processes may interact effectively with limited-capacity peripheral perceptual-motor components.

Of course, now is not the first occasion on which human-performance theorists have needed to
radically change their world view. More than fifty years ago, for example, a dominant model in
sensory psychophysics was high-threshold theory (HTT). Analogous to the traditional RSB
hypothesis, HTT claimed that people detect simple sensory stimuli (e.g., lights, tones, etc.) through a
discrete all-or-none threshold mechanism. In order for a stimulus to be detected and reported, its
subjective intensity supposedly had to exceed an absolute level within this mechanism. Because of
the assumed threshold's rigidity, little or no accommodation was provided by HTT for subjects'
possible judgment strategies. As a result, many problematic aspects of psychophysical data went
unexplained. Then, however, statistical signal-detection theory (SDT) emerged on the scene,
reconciling phenomena that had previously bedeviled HTT (Tanner & Swets, 1954).
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Unlike HTT, this new framework assumed no discrete absolute high threshold; instead, SDT
attributed subjects' detection performance to stochastic processes that involve a continuum of
sensory states and adjustable decision criteria. According to SDT, people set their decision criteria
strategically to achieve various combinations of stimulus "hits" and noise "correct rejections,”
depending on prevailing reward schemes. The adjustable decision criteria of SDT have much the
same spirit as the flexible lockout points and unlocking events of our AEC models for the PRP
procedure. As in our AEC models, a key insight of SDT has been that even the seemingly most
elementary human performance — for example, detection of sensory stimuli -- is governed by
sophisticated programmable executive processes rather than just rigid peripheral mechanisms.
Perhaps keeping this historical precedent in mind will help smooth the entry of human-performance
theory to a Brave New World without pervasive immutable response-selection bottlenecks.
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